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Abstract-An analysis is presented of convective heat transfer in the fully developed laminar flow of 
an incompressible conducting fluid between parallel plates through a transverse magnetic field. In 
particular the earlier analysis of Siegel involving non-conducting plates is corrected and extended to 

plates of finite conductivity. 

Resume-Cet article presente une etude sur la transmission de chaieur par convection dam un ccoule- 
ment laminaire pleinement Ctabli dun fluide conducteur incompressjble, entre des plaques paralltles B 
wavers un champ magnitique. En particulier, I’etude la plus recente de Siegel est corrigee et etendue a 

des plaques de conductivite finie. 

Zusammenfassung-Es wird der konvektive Wirmetibergang in einer inkompressiblen elektrrsch 
leitenden Fltissigkeit untersucht fur voll ausgebildete Laminarstriimung zwischen parallelen Platten 
und einem dazwischen angelegten Magnetfeld. Insbesondere wird die friihere Analyse von Siegel fur 

NOMENCLATURE 

thermal diffusivity; 
mean temperature gradient ; 
magnetic induction; 
velocity of light: 
fluid specific heat at constant pressure; 
electric field intensity; 
magnetic field intensity; 
thickness of channel wall; 
current density; 
thermal conductivity; 
magnetic viscosity; 
half-heist of channel; 
magnetic permeability: 
Hartmann number ; 
kinematic viscosity; 
pressure; 
pressure gradient ; 
Prandtl number ; 

*This work was supported in part by the Ballistic 
Missile Division, U.S. Air Force, under Contract No. 
AF 04-(645)-24. 

heat flux; 
density; 
hydrodynamic Reynolds number: 
magnetic Reynolds number; 
electrical conductivity: 
fluid velocity; 
mean fluid velocity; 
cash M/(cosh M-l) times centerline 
velocity; 
ratio of electrical resistances of channel 
walls and fluid; 
co-ordinate in flow direction; 
co-ordinate transverse to flow and 
magnetic field ; 
co-ordinate in magnetic field direction. 

Subscripts 

; 
confining walls or plates ; 
fluid. 

INTRODUCTION 
RECENTLY an analysis was presented by Siegel 
[l] of the convective heat transfer for fully 
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developed laminar flow in a parallel plate 
channel with an imposed uniform wall heat 
flux, in the situation that the fluid is incom- 
pressible and electrically conducting, the plates 
are electrical insulators, and there is an impressed 
magnetic field transverse to the flow. The 
magnetic field flattens the parabolic velocity 
distribution usual to such a flow so that one then 
finds relatively higher fluid velocities near the 
wall as in turbulent flow [2]. As a consequence 
of this and of ohmic heating arising from induced 
currents in the fluid which provide an internal 
heat source, the temperature difference between 
wall and fluid is altered. 

The problem becomes considerably more 
complex if one considers the plates to be 
electrically conducting. Now the fluid is not in a 
net-current-zero state, the magnitude and distri- 
bution of current in the Auid depends on the 
relative resistance of fluid and plates, and there 
is ohmic heating in the parallel plates as well as 
in the fluid. One can consider the plates to be 
electrically conducting without providing heat 
to the fluid by replacing them conceptually with 
plates of infinite conductivity connected in a 
coplanar sense (to preserve one-dimensionality) 
through an external load resistance [2, 31. The 
situation is of some interest in that it provides a 
very crude model to a portion of the heat 
transfer problem in magnetohydrodynamic 
power-generating ducts of large aspect ratio, in 
the case when the walls normal to the applied 
field are nominally insulators but do in fact 
conduct under operating conditions. 

It is the purpose of this note to extend Siegel’s 
analysis to this case of plates of arbitrary 
electrical conductivity. For convenience and 
the sake of completeness some of the back- 
ground is summarized. The results are presented 
only formally for the reason that they are 
complex and in practice one would doubtless 
resort to machine computation in such heat 
transfer problems in order to take into account 
more of the physical variables. 

FLOW DESCRIP’ITON 

Consider the steady laminar flow of a viscous 
incompressible fluid of constant conductivity 
ar through a parallel plate channel of height 2L. 
(c.g.s. units are used throughout this paper.) A 

H 

uniform magnetic field B = B, is applied. The 
walls parallel to the field are at y = f co. Con- 
tinuity requires that the velocity u = u,(z) be 
uniform in x, with U, = U, = 0. Then one can 
show [3, 41 the fully developed velocity profile 
to be 

i 

cash MzJL 
21 = u* 1 - -cash M 

1 
(1) 

where ug, which is cash M/(cosh M - 1) times 
the fluid velocity on the channel center line, is 
given by 

PC2 MU + W> ___. 
‘O =T &@ MW + tanh M’ (21 

the quantity P = +I/& is the uniform pressure 
gradient in the channel, M is the Ha~mann 
number, defined as M = (B~L/c) [~f/(vp)]x~z, 
with v and p the kinematic viscosity and density, 
respectively, and W is the ratio of the electrical 
resistance of the fluid to that of the plates. Thus, 
with plates of equal thickness h and uniform 
conductivity uPr one may write 

(3) 

If one is dealing not with parallel plates con- 
nected at y = ic co but with coplanar connection 
through an external load, the quantity (2ha,)-r 
should include the series resistance of the 
external load per unit channel length. The 
average fluid velocity in the channel is found 
from equations (1) and (2) to be 

1=u, 1 -_tanhM 
i 

With the assumption that the induced magnetic 
field in the ,--direction is small compared to the 
applied field, one obtains from the usual mag- 
netohydrodynamic equations and boundary 
conditions [5] the following expression for the 
induced fields, current distributions and pressure 
gradient : 
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Re,B, sinh Mz/L z MW + tanh M -* 
II 

--- 
M cash M L 1SW 1 3 (8) 

(f”H,), = * . gf$-. z, 
(j,), = y+& - $ 

(9) 

(w 

(11) 

and 

1 ap 4% 
[ 

ii 
~ = - --2 *o --- p ax PC I 1$-W' (12) 

in which p is permeability, Re, == 2Lu,/X is the 
magnetic Reynolds number, and X = c2/(47rp,u,) 
is the fluid magnetic viscosity, Implicit in 
equations (5) through (9) is conservation of 
current within any element of channel length, 
viz. 

f:, (j,),dz + 2~~(~~)~ = 0. 

Ohmic heating in the fluid and in the plates is 
computed as jzju from equations (10) and (I 1). 

HJXAT TRANSFER ANALYSIS 

Suppose that the externally imposed heat 
flux q through the confining walls is uniform 
with x, consistent with the fluid velocity being 
independent of X. If one neglects viscous dissipa- 
tion compared to the transverse heat transport 
and, further, disregards any temperature effects 
due to ohmic losses in the plates, then the 
temperature gradient, A, in the channel can be 
written 

where Ff is the mean fluid temperature and C, is 
the fluid specific heat at constant pressure. It 
follows that one can take 

Tr(x,:) = Ax $ G(z). (14) 

The energy balance for the system can be 
written as 

or, using equation (14), as 

d2G 1 (A$ 
uA = ad;i i- pC, ar ) (16) 

with boundary conditions consistent with equa- 
tion (14) being 

G=O, Z= &L; dG/d= = 0, z = 0. (17) 

The choice G = 0 rather than G = constant is 
purely for convenience. The quantity a is the 
thermal diffusivity which for present purposes 
is defined by 

0. = WJC,), (18) 

where k is the thermal conductivity. (The 
validity of this definition for a must be examined 
in any real calculation, since replacing k by 
apC, in developing these results requires that 
PC, be constant in the fluid). Integration of 
equation (16) yields 

G(z) = Cl (;; - 11 + 
/ 

CZ icos;r;L - 11 

+ C, 
cash 2M~lL 
-- 1). - cash 2M (19) : 

where 

and 

C, = - 2: cash 2M sech2 M, (22) 
2, 

in which Pr = V/CZ is the Prandtl number, and the 
quantity A, the mean temperature gradient 
defined in equation (13), can be written 

A 

Y \ 

-t 

= (LiipC,)-1 
: 

q + P?P/(pv) 

1 2(1 + W) tanh M __ _ _____-.--- 
M2 M2(MW + tanh M) 

(1 + WI2 sinh M cash M + M 

2M cosha M(M W -t tanh 1) AQ2 . (23) 
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From equation (M), together with the obvious 
definition of mean fluid temperature, one may 
write the difference between wall and mean 
fluid temperature as 

Carrying out the indicated integrations yields 

tanhz M 
f 

C$ 
r 

+ (1 _;tanh2f--ch2_llj c,, (25) 

where the coefficients C,, C,, and Cs are as 
defined in equations (20-22). Inserting these 
coefficients and rearranging terms makes it 
possible to write equation (25) as 

in which the Reynolds number is defined as 
iiL/v, and the function 4(M) can be written as 

#M) = 

One can shaw +(M) to be the same as that 
defined by Siegel. The function x(M, W) is given 
by 

Siegel’s function ~~), which shouid be the 
same as x(M, 0) evaluated from equation (28), 
is not correct; the error in his paper apparently 
occurs in the steps between obtaining G(z) and 
T, - Tf, 

To illustrate the interplay of the quantities 
q, M, and W it is instructive to obtain an 
approximation for T, - pf with W arbitrary 
and M large (it appears that M may be of the 
order of 100 in typical magn~ohydrody~ami~ 
power ducts). One finds for 4(M) the following 

and for x(M, W) 

27 3W 17W2 )I . (31) 

For M sufficiently large, one finds that xfM, W) 
becomes independent of W and equation (26) 
can be written 

1 qL 
T,- Tf;r jk 

(RePr)%u M 
--- 

6L2CP . (32) 

To illustrate the magnitude of T, - r,, one can 
rewrite equation (32) for mercury, viz., 

T, - Tf 2 224L - * 27%8, (33) 

with q in cal/cma s, L in cm, and E in cm/s. 
It is interesting to note that equation (33) 
indicates a possibility of sign change in T, - i”$ 
for a given q as A4 is increased. This is physically 

x cash 2M sechz , (28) 
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reasonable when one notes from equations (13) 
and (14) that for A4 = 0, with q as defined, the 
temperature difference corresponds to heat 
conduction into the fluid. If, on the other hand 
the magnetic field becomes high enough so that 
ohmic heating in the fluid exceeds the energy 
supplied to the fluid through q, the temperature 
difference should change sign. 

Consider now the case when the term in x is 
negligible compared to that in 4, as for example 
would be the case for a very low velocity flow 
through a strong magnetic field. Then one finds, 
as did Siegel, that T, - Tf is reduced from its 
value with no field. In the case of A4 large, the 
decrease is from (17/35)qL/k to (1/3)qL/k, or 
nearly 50 per cent. 

One final comment with respect to equation 
(31) is that the value W = 1 corresponds to the 
optimum operating point of idealized mag- 
netohydrodynamic ducts, i.e. W = 1 corres- 
ponds to equality of external load and internal 
generator resistances. 

DISCUSSION 

The foregoing is in some respects an exercise, 
insofar as its applicability to heat transfer calcu- 
lations in real magnetohydrodynamic flows is 
concerned. Working fluids are generally com- 
pressible, conductivities are temperature and 
density dependent, uniform wall heat fluxes are 
only a convenient fiction, flows are in fact three- 
dimensional (side wall effects [4, 61 with or 
without power extraction) and also radiative 
heat transfer will play a role. Most important 
however, is the high probability that flows of 
real interest will be turbulent [7]. In power- 
generating devices the walls to which this parallel 
plate analysis refers will be nominally insulators 

when cool, but will conduct in operation as a 
result of property changes at high temperatures 
and possible reaction with seeding materials 
added to the working fluid to render it con- 
ducting. Moreover this conduction may be in 
addition to that provided by side wall electrodes. 
It would appear on the basis of preliminary 
studies made of magnetohydrodynamic power- 
generating devices that in practice one will be 
dealing with M large and W # 0. 
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